If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9c^2-4c-52=0
a = 9; b = -4; c = -52;
Δ = b2-4ac
Δ = -42-4·9·(-52)
Δ = 1888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1888}=\sqrt{16*118}=\sqrt{16}*\sqrt{118}=4\sqrt{118}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{118}}{2*9}=\frac{4-4\sqrt{118}}{18} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{118}}{2*9}=\frac{4+4\sqrt{118}}{18} $
| -1.6=0.2b | | 10-3(5-3n)=23 | | 2x+21=90x | | 30x-9=2x+1 | | X-3/x+5=-12/7 | | 44+x+x-44=180 | | 18=-4t-6 | | X+(1+x)+(2+x)=156 | | 18=−4t−6 | | z/2+7=-51 | | -6-4=6x+4 | | z/2+7=51 | | k/4+4=26 | | -3x+1=-3×+4 | | S=2(3.14)(18x26)+2(3.14)(324 | | 13=2c+3+6c | | -5=2+14n | | 25×=2x+3 | | 2.4x-14.02=5.9 | | 1/3(y+12)=19 | | 3n+6=-9 | | 2d^2-d-1=0 | | 5.2+x=104 | | 2y-10=23 | | A/q5=15 | | 3x-4÷5=7 | | 2x^2-5x+105=0 | | 7x+3=-3+5x+18 | | 8-7y=4*7y-62 | | (5y-2)/3=(y+3)/4 | | X^2+3x=550 | | u/6+48=-60 |